• Stars
    star
    318
  • Rank 131,872 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created over 9 years ago
  • Updated about 9 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

An artificial machine learning program that attempts to impersonate the writing style of any given text training set

Machine learning text generator

Machine learning that utilises sk-learn, numpy and nltk in an attempt to generate text in the style of any given training data. Written in python3.

Installing


pip3 install -U scikit-learn
pip3 install -U numpy
pip3 install -U nltk

### Usage ------ Run the program: ```bash python3 main.py ``` Run the unit test function on the sentence structuring: ```bash python3 main.py -utss ``` Unit test function for vocabulary: ```bash python3 main.py -utv ``` Specify the training data file: ```bash python3 main.py -td ``` Specify test sentence: (Generates text that follows on from the input) example input = "the boy ran" ```bash python3 main.py -ts "" ``` Specify the number of words generated for given test sentence: ```bash python3 main.py -tsc ``` Output generated text to a file: ```bash python3 main.py -of "" ```
Example usage scenario: ```bash python3 main.py -ts "today i will" -tsc 10 -td "Datasets/HarryPotter(xxlarge).txt" ```

Datasets


Includes 6 datasets:

HarryPotter(small).txt = 346 training vectors
HarryPotter(medium).txt = 2500 training vectors
HarryPotter(large).txt = 4550 training vectors
HarryPotter(xlarge).txt = 11429 training vectors
HarryPotter(xxlarge).txt = 15829 training vectors

MacbookAirBlog(large).txt = 3576 training vectors

Change the data sets with the '-td' command. The larger the data set, the longer the program will take to fit and produce a result. The ability to load an already fitted network has not been implemented yet, so the program has to run the initial fit every time.
The Harry potter data sets have been taken from the book directly and the macbook dataset was taken from a random blog.
It is extremely easy to add your own data set, just make sure that it is in the form of a text blob (see provided datasets). And then simply use the command line to select your dataset

python3 main.py -td "Datasets/your_set.txt"

Dataset has to contain more words than the training range (default = 3).

Go here to see results!

Here I show multiple text generations with different training data sets and how accurate the program is at impersonating the training data.