Awesome backbones for image classification
写在前面
- 若训练效果不佳,首先需要调整学习率和Batch size,这俩超参很大程度上影响收敛。其次,从关闭图像增强手段(尤其小数据集)开始,有的图像增强方法会污染数据,如
如何去除增强?如efficientnetv2-b0配置文件中train_pipeline可更改为如下
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=192,
efficientnet_style=True,
interpolation='bicubic'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
若你的数据集提前已经将shape更改为网络要求的尺寸,那么Resize
操作也可以去除。
更新日志
2023.08.05
- 新增TinyViT(预训练权重不匹配)、DeiT3、EdgeNeXt、RevVisionTransformer
2023.03.07
- 新增MobileViT、DaViT、RepLKNet、BEiT、EVA、MixMIM、EfficientNetV2
2022.11.20
- 新增是否将测试集用作验证集选项,若不使用,从训练集按ratio划分验证集数量,随机从训练集某fold挑选作为验证集(类似k-fold但不是,可自己稍改达到k-fold目的),详见Training tutorial
2022.11.06
- 新增HorNet, EfficientFormer, SwinTransformer V2, MViT模型
测试环境
- Pytorch 1.7.1+
- Python 3.6+
资料
数据集 | 视频教程 | 人工智能技术探讨群 |
---|---|---|
花卉数据集 提取码:0zat |
点我跳转 | 1群:78174903 3群:584723646 |
快速开始
- 遵循环境搭建完成配置
- 下载MobileNetV3-Small权重至datas下
- Awesome-Backbones文件夹下终端输入
python tools/single_test.py datas/cat-dog.png models/mobilenet/mobilenet_v3_small.py --classes-map datas/imageNet1kAnnotation.txt
教程
模型
- LeNet5
- AlexNet
- VGG
- DenseNet
- ResNet
- Wide-ResNet
- ResNeXt
- SEResNet
- SEResNeXt
- RegNet
- MobileNetV2
- MobileNetV3
- ShuffleNetV1
- ShuffleNetV2
- EfficientNet
- RepVGG
- Res2Net
- ConvNeXt
- HRNet
- ConvMixer
- CSPNet
- Swin-Transformer
- Vision-Transformer
- Transformer-in-Transformer
- MLP-Mixer
- DeiT
- Conformer
- T2T-ViT
- Twins
- PoolFormer
- VAN
- HorNet
- EfficientFormer
- Swin Transformer V2
- MViT V2
- MobileViT
- DaViT
- replknet
- BEiT
- EVA
- MixMIM
- EfficientNetV2
预训练权重
我维护的其他项目
参考
@repo{2020mmclassification,
title={OpenMMLab's Image Classification Toolbox and Benchmark},
author={MMClassification Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmclassification}},
year={2020}
}