• Stars
    star
    721
  • Rank 60,383 (Top 2 %)
  • Language
    Ruby
  • License
    MIT License
  • Created over 7 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Ethereum library for the Ruby language

Ethereum for Ruby

GitHub Workflow Status GitHub release (latest by date) Gem Gem Visitors codecov Maintainability Top Language Yard Doc API Usage Wiki Open-Source License Contributions Welcome

A straightforward library to build, sign, and broadcast Ethereum transactions. It allows the separation of key and node management. Sign transactions and handle keys anywhere you can run Ruby and broadcast transactions through any local or remote node. Sign messages and recover signatures for authentication.

Note, this repository is just a public archive of the no longer maintained ethereum gem. For the partial rewrite and merge with the eth gem see q9f/eth.rb.

Highlights

  • Simple syntax, programmer friendly
  • Deploy and interact with contracts on the blockchain
  • Contract - ruby object mapping to solidity contract
  • Signing transactions with ruby-eth gem.
  • Compile Solidity contracts with solc compiler from ruby
  • Receive events from contract
  • Make direct json rpc calls to node from ruby application
  • Connect to node via IPC or HTTP
  • Helpful rake tasks for common actions

Installation

Before installing the gem make sure you meet all prerequisites, especially that you have:

  • compatible ethereum node installed
  • compatible solidity compiler installed
  • wallet with some ethereum on it

Before you run a program check that the node is running and accounts you want to spend from are unlocked.

To install gem simply add this line to your application's Gemfile:

gem 'ethereum.rb'

And then execute:

$ bundle

Or install it yourself as:

$ gem install ethereum.rb

Basic Usage

You can create a contract from solidity source and deploy it to the blockchain, with the following code:

contract = Ethereum::Contract.create(file: "greeter.sol")
address = contract.deploy_and_wait("Hello from ethereum.rb!")

Deployment may take up to a couple of minutes. Once deployed you can start interacting with the contract, e.g. calling it's methods:

contract.call.greet # => "Hello from ethereum.rb!"

You can see example contract greeter here.

If contract method name uses camel case you must convert it to snake case when use call: call.your_method.

Smart contracts

Compile multiple contracts at once

If you want to complie multiple contracts at once, you can create new instances using newly declared ruby clasess:

Ethereum::Contract.create(file: "mycontracts.sol", client: client)
contract = MyContract1.new
contract = contract.deploy_and_wait
contract2 = MyContract2.new
contract2 = contract.deploy_and_wait

All names used to name contract in solidity source will translate to name of classes in ruby (camelized).

Note: If class of given name exist it will be undefined first to avoid name collision.

Get contract from blockchain

The other way to obtain a contract instance is to get one that already exists on the blockchain. To do so you need a contract name, contract address and ABI definition.

contract = Ethereum::Contract.create(name: "MyContract", address: "0x01a4d1A62F01ED966646acBfA8BB0b59960D06dd ", abi: abi)

Note that you need to specify a contract name, that will be used to define new class in ruby, as it is not a part of the ABI definition.

Alternatively you can obtain the abi definition and name from a contract source file:

contract = Ethereum::Contract.create(file: "MyContract.sol", address: "0x01a4d1A62F01ED966646acBfA8BB0b59960D06dd ")

If you want to create a new contract, that is not yet deployed from ABI definition you will need also to supply binary code:

contract = Ethereum::Contract.create(name: "MyContract", abi: abi, code: "...")

Simple Truffle integration

If you use Truffle to build and deploy contracts, you can pick up the Truffle artifacts to initialize a contract. For example, if you have a MyContract in the Truffle directory at /my/truffle/project:

contract = Ethereum::Contract.create(name: "MyContract", truffle: { paths: [ '/my/truffle/project' ] }, client: client, address: '0x01a4d1A62F01ED966646acBfA8BB0b59960D06dd')

The contract factory will attempt to load the deployed address from the Truffle artifacts if the client's network is present:

contract = Ethereum::Contract.create(name: "MyContract", truffle: { paths: [ '/my/truffle/project' ] }, client: client)

Interacting with contract

Functions defined in a contract are exposed using the following conventions:

contract.transact.[function_name](params)
contract.transact_and_wait.[function_name](params)
contract.call.[function_name](params)

Example Contract in Solidity

contract SimpleRegistry {
  event LogRegister(bytes32 key, string value);
  mapping (bytes32 => string) public registry;

  function register(bytes32 key, string value) {
    registry[key] = value;
    LogRegister(key, value);
  }

  function get(bytes32 key) public constant returns(string) {
    return registry[key];
  }

}

For contract above here is how to access it's methods:

contract.transact_and_wait.register("performer", "Beastie Boys")

Will send transaction to the blockchain and wait for it to be mined.

contract.transact.register("performer", "Black Eyed Peas")

Will send transaction to the blockchain return instantly.

contract.call.get("performer") # => "Black Eyed Peas"

Will call method of the contract and return result. Note that no transaction need to be send to the network as method is read-only. On the other hand register method will change contract state, so you need to use transact or transact_and_wait to call it.

Receiving Contract Events

Using the example smart contract described above, one can listen for LogRegister events by using filters.

You can get a list of events from a certain block number to the latest:

require 'ostruct'

event_abi = contract.abi.find {|a| a['name'] == 'LogRegister'}
event_inputs = event_abi['inputs'].map {|i| OpenStruct.new(i)}
decoder = Ethereum::Decoder.new

filter_id = contract.new_filter.log_register(
  {
    from_block: '0x0',
    to_block: 'latest',
    address: '0x....',
    topics: []
  }
)

events = contract.get_filter_logs.log_register(filter_id)

events.each do |event|
  transaction_id = event[:transactionHash]
  transaction = ethereum.eth_get_transaction_receipt(transaction_id)
  args = decoder.decode_arguments(event_inputs, entry['data'])
  puts "#{transaction.inspect} with args: #{args}"
end

IPC Client Connection

By default methods interacting with contracts will use default Json RPC Client that will handle connection to ethereum node. Default client communicate via IPC. If you want to create custom client or use multiple clients you can create them yourself.

To create IPC client instance of simply create Ethereum::IpcClient:

client = Ethereum::IpcClient.new

You can also customize it with path to ipc file path and logging flag:

client = Ethereum::IpcClient.new("~/.parity/mycustom.ipc", false)

If no ipc file path given, IpcClient looks for ipc file in default locations for parity and geth. The second argument is optional. If it is true then logging is on.

By default logging is on and logs are saved in "/tmp/ethereum_ruby_http.log".

To create Http client use following:

client = Ethereum::HttpClient.new('http://localhost:8545')

You can supply client when creating a contract:

contract = Ethereum::Contract.create(client: client, ...)

You can also obtain default client:

client = Ethereum::Singleton.instance

Calling json rpc methods

Ethereum.rb allows you to interact directly with Ethereum node using json rpc api calls. Api calls translates directly to client methods. E.g. to call eth_gasPrice method:

client.eth_gas_price # => {"jsonrpc"=>"2.0", "result"=>"0x4a817c800", "id"=>1}

Note: methods are translated to underscore notation using metaprogramming (See client.rb for more information).

Full list of json rpc methods is available here

Signed transactions

Ethereum.rb supports signing transactions with key using ruby-eth gem.

To create a new key simply do the following:

key = Eth::Key.new

Then you can use the key to deploy contracts and send transactions, i.e.:

contract = Ethereum::Contract.create(file: "...")
contract.key = key
contract.deploy_and_wait("Allo Allo!")
contract.transact_and_wait.set("greeting", "Aloha!")

You can also transfer ether transfer using custom keys:

client.transfer(key, "0x342bcf27DCB234FAb8190e53E2d949d7b2C37411", amount)
client.transfer_and_wait(key, "0x949d7b2C37411eFB763fcDCB234FAb8190e53E2d", amount)

Custom gas price and gas limit

You can change gas price or gas limit in the client:

client.gas_limit = 2_000_000_
client.gas_price = 24_000_000_000

or per contract:

contract.gas_limit = 2_000_000_
contract.gas_price = 24_000_000_000

Utils

Url helpers for rails applications

Often in the application you want to link to blockchain explorer. This can be problematic if you want links to work with different networks (ropsten, mainnet, kovan) depending on environment you're working on. Following helpers will generate link according to network connected:

link_to_tx("See the transaction", "0x3a4e53b01274b0ca9087750d96d8ba7f5b6b27bf93ac65f3174f48174469846d")
link_to_address("See the wallet", "0xE08cdFD4a1b2Ef5c0FC193877EC6A2Bb8f8Eb373")

They use etherscan.io as a blockexplorer.

Note: Helpers work in rails environment only, works with rails 5.0+.

Utils rake tasks

There are couple of rake tasks to help in wallet maintenance, i.e.:

rake ethereum:contract:deploy[path]             # Compile and deploy contract
rake ethereum:contract:compile[path]            # Compile a contract
rake ethereum:transaction:byhash[id]            # Get info about transaction
rake ethereum:transaction:send[address,amount]  # Send [amount of] ether to an account

Debbuging

Logs from communication between ruby app and node are available under following path:

/tmp/ethereum_ruby_http.log

Roadmap

  • Rubydoc documentation

Development

Run bin/console for an interactive prompt that will allow you to experiment.

Make sure rake ethereum:test:setup passes before running tests.

Then, run rake spec to run the tests.

Test that do send transactions to blockchain are marked with blockchain tag. Good practice is to run first fast tests that use no ether and only if they pass, run slow tests that do spend ether. To do that use the following line:

$ bundle exec rspec --tag ~blockchain && bundle exec rspec --tag blockchain

You need ethereum node up and running for tests to pass and it needs to be working on testnet (Ropsten).

Acknowledgements and license

This library has been forked from ethereum-ruby by DigixGlobal Pte Ltd (https://dgx.io).

The gem is available as open source under the terms of the MIT License.

More Repositories

1

useDApp

Framework for rapid Dapp development. Simple. Robust. Extendable. Testable
TypeScript
854
star
2

Waffle

Library for writing and testing smart contracts.
TypeScript
728
star
3

Mars

Mars is an infrastructure-as-code tool for Ethereum
TypeScript
77
star
4

Doppelganger

Smart contract mocking tool
TypeScript
58
star
5

AllSporter-TGE

AllSporter Crowdsale and Allsporter Token
JavaScript
27
star
6

ENSBuilder

A mock ENS system builder for developing and testing applications using ENS
JavaScript
20
star
7

reactive-properties

Simple reactive property system
TypeScript
19
star
8

ethworks-solidity

Library with common Solidity smart contracts
JavaScript
14
star
9

bn-chai

BN chai extends Chai with bn.js operations.
JavaScript
14
star
10

dapp-boilerplate

A boilerplate for your DApp needs
TypeScript
13
star
11

bem-components-react

A factory to create react components that follow BEM methodology with first-class typescript support.
TypeScript
13
star
12

truffle-zeppelin-boilerplate

Minimalistic boilerplate for using open zeppelin with truffle
JavaScript
12
star
13

hackathons

4
star
14

PingPongPairProgrammingDojo

JavaScript
3
star
15

ethereumjs-vm-benchmarks

JavaScript
3
star
16

ThinkCoinCrowdsaleContract

ThinCoin Token and Crowdsale Contract
JavaScript
3
star
17

zksync-spike

TypeScript
2
star
18

ts-esnure

TypeScript
2
star
19

statemine-asset-creator

TypeScript
2
star
20

tech-talk-10

TypeScript
1
star
21

html-css-starter

Sass
1
star
22

status-waku

HTML
1
star
23

0xstudents-homework

1
star
24

status-waku-voting

TypeScript
1
star
25

bootcamp

TypeScript
1
star
26

pair-programming-dojo

JavaScript
1
star
27

LiveCoding

TypeScript
1
star
28

react-boilerplate

TypeScript
1
star
29

external_call_bug_hunt

JavaScript
1
star
30

react-template

JavaScript
1
star
31

mimuw-zajecia

1
star
32

pair-programming

JavaScript
1
star
33

mini2018Z_workshop2

Materials for workshop 2 (MINI 2018Z edition)
JavaScript
1
star
34

useDot

TypeScript
1
star
35

restless-website

HTML
1
star
36

status-DApp-connect

HTML
1
star
37

circom-hello-world

Template to quickly learn circom
TypeScript
1
star
38

status-vac

HTML
1
star