• Stars
    star
    1,838
  • Rank 25,253 (Top 0.5 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created over 5 years ago
  • Updated 10 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

All Contributors

Do you want a RL agent nicely moving on Atari?

Rainbow is all you need!

This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains both of theoretical backgrounds and object-oriented implementation. Just pick any topic in which you are interested, and learn! You can execute them right away with Colab even on your smartphone.

Please feel free to open an issue or a pull-request if you have any idea to make it better. :)

If you want a tutorial for policy gradient methods, please see PG is All You Need.

Contents

  1. DQN [NBViewer] [Colab]
  2. DoubleDQN [NBViewer] [Colab]
  3. PrioritizedExperienceReplay [NBViewer] [Colab]
  4. DuelingNet [NBViewer] [Colab]
  5. NoisyNet [NBViewer] [Colab]
  6. CategoricalDQN [NBViewer] [Colab]
  7. N-stepLearning [NBViewer] [Colab]
  8. Rainbow [NBViewer] [Colab]

Prerequisites

This repository is tested with python 3.8+

git clone https://github.com/Curt-Park/rainbow-is-all-you-need.git
cd rainbow-is-all-you-need
make setup

How to Run

jupyter lab

Related Papers

  1. V. Mnih et al., "Human-level control through deep reinforcement learning." Nature, 518 (7540):529–533, 2015.
  2. van Hasselt et al., "Deep Reinforcement Learning with Double Q-learning." arXiv preprint arXiv:1509.06461, 2015.
  3. T. Schaul et al., "Prioritized Experience Replay." arXiv preprint arXiv:1511.05952, 2015.
  4. Z. Wang et al., "Dueling Network Architectures for Deep Reinforcement Learning." arXiv preprint arXiv:1511.06581, 2015.
  5. M. Fortunato et al., "Noisy Networks for Exploration." arXiv preprint arXiv:1706.10295, 2017.
  6. M. G. Bellemare et al., "A Distributional Perspective on Reinforcement Learning." arXiv preprint arXiv:1707.06887, 2017.
  7. R. S. Sutton, "Learning to predict by the methods of temporal differences." Machine learning, 3(1):9–44, 1988.
  8. M. Hessel et al., "Rainbow: Combining Improvements in Deep Reinforcement Learning." arXiv preprint arXiv:1710.02298, 2017.

Contributors

Thanks goes to these wonderful people (emoji key):

Jinwoo Park (Curt)
Jinwoo Park (Curt)

πŸ’» πŸ“–
Kyunghwan Kim
Kyunghwan Kim

πŸ’»
Wei Chen
Wei Chen

🚧
WANG Lei
WANG Lei

🚧
leeyaf
leeyaf

πŸ’»
ahmadF
ahmadF

πŸ“–
Roberto Schiavone
Roberto Schiavone

πŸ’»

This project follows the all-contributors specification. Contributions of any kind welcome!

More Repositories

1

segment-anything-with-clip

Segment Anything combined with CLIP
Python
324
star
2

handwritten_digit_recognition

Handwritten digit recognition with MNIST & Keras
Python
75
star
3

yolo-world-with-efficientvit-sam

YOLO-World + EfficientViT SAM
Python
65
star
4

mnist-fastapi-celery-triton

Simple example of FastAPI + Celery + Triton for benchmarking
Python
60
star
5

mnist-fastapi-aio-triton

Simple example of FastAPI + gRPC AsyncIO + Triton
Python
56
star
6

reinforcement_learning_an_introduction

Summary (in Korean) and python implementation of 'Reinforcement Learning: An Introduction' written by Sutton & Barto
Jupyter Notebook
56
star
7

cs231n_assignments

[Assignments] CS231N: Convolutional Neural Networks for Visual Recognition (2016 & 2017)
Jupyter Notebook
46
star
8

TIL

Today I Learned
Jupyter Notebook
21
star
9

serving-codegen-gptj-triton

Serving Example of CodeGen-350M-Mono-GPTJ on Triton Inference Server with Docker and Kubernetes
Python
20
star
10

python-monorepo-template

Python monorepo template with Pants
Python
19
star
11

url-shortener

URL shortener service on hostOS / docker-compose / k8s.
Mustache
16
star
12

triton-inference-server-practice

Archives for Triton Inference Server Practices
Python
15
star
13

producer-consumer-fastapi-celery

Producer-consumer with FastAPI and Celery
Python
14
star
14

locust-k8s

Locust on k8s example for scalable load tests
Makefile
14
star
15

echo-grpc-triton

Inference API server with echo and gRPC to triton server (golang)
Go
12
star
16

mnist-api-server

Mnist API server w/ FastAPI
Python
8
star
17

comfyui-onprem-k8s

ComfyUI Service on On-Premise Kubernetes Cluster
Smarty
8
star
18

Curt-Park

4
star
19

nlp-practice

Python
3
star
20

style_transfer_keras

Style Transfer with Keras
Python
3
star
21

portfolio_opt

My portfolio optimizer
Python
3
star
22

reddit-posts-to-slack

Send Reddit HOT Posts to Slack
Python
3
star
23

JWTest

Simple unit test framework made with C++ macro.
C++
2
star
24

github-actions-for-ci

JavaScript
2
star
25

atari2600-rllib

Atari2600 Training / Evaluation with RLlib
Python
1
star
26

k8s-gpu-sharing-pods

Tricks for GPU sharing pods on Kubernetes without any use of middleware like HAMi or DRA
Mustache
1
star
27

hello-github-actions

Dockerfile
1
star