• Stars
    star
    240
  • Rank 168,229 (Top 4 %)
  • Language
    C
  • License
    BSD 2-Clause "Sim...
  • Created about 8 years ago
  • Updated about 1 month ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

JPEG encoder and decoder library and console application for NVIDIA GPUs from CESNET and SITOLA of Faculty of Informatics at Masaryk University.

GPUJPEG

JPEG encoder and decoder library and console application for NVIDIA GPUs for high-performance image encoding and decoding.

This documents provides an introduction to the library and how to use it. You can also look to FAQ.md for additional information. To see latest changes you can display file NEWS.md.

Table of contents

Authors

  • Martin Srom, CESNET z.s.p.o
  • Jan Brothánek
  • Petr Holub
  • Martin Jirman
  • Jiri Matela
  • Martin Pulec
  • Lukáš Ručka

Features

  • uses NVIDIA CUDA platform
  • baseline Huffman 8-bit coding
  • use of JFIF file format by default, Adobe and SPIFF is supported as well (used by encoder if JPEG internal color space is not representable by JFIF - eg. limited range YCbCr BT.709 or RGB)
  • use of restart markers that allow fast parallel encoding/decoding
  • Encoder by default creates non-interleaved stream, optionally it can produce an interleaved stream (all components in one scan) or/and subsampled stream.
  • support for color transformations and coding RGB JPEG
  • Decoder can decompress JPEG codestreams that can be generated by encoder. If scan contains restart flags, decoder can use parallelism for fast decoding.
  • command-line tool with support for encoding/decoding raw images as well as PNM/PAM or Y4M

Overview

Encoding/Decoding of JPEG codestream is divided into following phases:

 Encoding:                       Decoding
 1) Input data loading           1) Input data loading
 2) Preprocessing                2) Parsing codestream
 3) Forward DCT                  3) Huffman decoder
 4) Huffman encoder              4) Inverse DCT
 5) Formatting codestream        5) Postprocessing

and they are implemented on CPU or/and GPU as follows:

  • CPU:
    • Input data loading
    • Parsing codestream
    • Huffman encoder/decoder (when restart flags are disabled)
    • Output data formatting
  • GPU:
    • Preprocessing/Postprocessing (color component parsing, color transformation RGB <-> YCbCr)
    • Forward/Inverse DCT (discrete cosine transform)
    • Huffman encoder/decoder (when restart flags are enabled)

Performance

Source 16K (DCI) image (8, 9) was cropped to 15360x8640+0+0 (1920x1080 multiplied by 8 in both dimensions) and for lower resolutions downscaled. Encoding was done with default values with input in RGB (quality 75, non-interleaved, rst 24-36, average from 99 measurements excluding first iteration) with following command:

gpujpegtool -v -e mediavision_frame_<res>.pnm mediavision_frame_<res>.jpg -n 100 [-q <Q>]

Encoding

GPU \ resolution HD (2 Mpix) 4K (8 Mpix) 8K (33 Mpix) 16K (132 Mpix)
GTX 3080 0.54 ms 1.71 ms 6.20 ms 24.48 ms
GTX 1060M 1.36 ms 4.55 ms 17.34 ms (low mem)
GTX 580 2.38 ms 8.68 ms (low mem) (low mem)

Note: First iteration took 233 ms for 8K on GTX 3080 and scales proportionally with respect to resolution.

Further measurements were performed on GTX 3080 only:

quality 10 20 30 40 50 60 70 80 90 100
duration HD (ms) 0.48 0.49 0.50 0.51 0.51 0.53 0.54 0.57 0.60 0.82
duration 4K (ms) 1.61 1.65 1.66 1.67 1.69 1.68 1.70 1.72 1.79 2.44
duration 8K (ms) 6.02 6.04 6.09 6.14 6.12 6.17 6.21 6.24 6.47 8.56
duration 8K (ms, w/o PCIe xfers) 2.13 2.14 2.18 2.24 2.23 2.25 2.28 2.33 2.50 5.01

Decoding

Decoded images were those encoded in previous section, averaging has been done similarly by taking 99 samples excluding the first one. Command used:

gpujpegtool -v mediavision_frame_<res>.jpg output.pnm -n 100
GPU \ resolution HD (2 Mpix) 4K (8 Mpix) 8K (33 Mpix) 16K (132 Mpix)
GTX 3080 0.75 ms 1.94 ms 6.76 ms 31.50 ms
GTX 1060M 1.68 ms 4.81 ms 17.56 ms (low mem)
GTX 580 2.61 ms 7.96 ms (low mem) (low mem)

Note: (low mem) above means that the card didn't have sufficient memory to encode or decode the picture.

Following measurements were performed on GTX 3080 only:

quality 10 20 30 40 50 60 70 80 90 100
duration HD (ms) 0.58 0.60 0.63 0.65 0.67 0.69 0.73 0.78 0.89 1.58
duration 4K (ms) 1.77 1.80 1.83 1.84 1.87 1.89 1.92 1.95 2.11 3.69
duration 8K (ms) 6.85 6.88 6.90 6.92 6.98 6.70 6.74 6.84 7.17 12.43
duration 8K (ms, w/o PCIe xfers) 2.14 2.18 2.21 2.24 2.27 2.29 2.34 2.42 2.71 7.27

Quality

Following tables summarizes encoding/decoding quality using NVIDIA GTX 580 for non-interleaved and non-subsampled stream with different quality settings (PSNR and encoded size values are averages of encoding several images, each of them multiple times):

Encoding 4K (4096x2160) and HD (1920x1080)

quality PSNR 4K size 4K PSNR HD size HD
10 29.33 dB 539.30 kB 27.41 dB 145.90 kB
20 32.70 dB 697.20 kB 30.32 dB 198.30 kB
30 34.63 dB 850.60 kB 31.92 dB 243.60 kB
40 35.97 dB 958.90 kB 32.99 dB 282.20 kB
50 36.94 dB 1073.30 kB 33.82 dB 319.10 kB
60 37.96 dB 1217.10 kB 34.65 dB 360.00 kB
70 39.22 dB 1399.20 kB 35.71 dB 422.10 kB
80 40.67 dB 1710.00 kB 37.15 dB 526.70 kB
90 42.83 dB 2441.40 kB 39.84 dB 768.40 kB
100 47.09 dB 7798.70 kB 47.21 dB 2499.60 kB

Decoding 4K (4096x2160) and HD (1920x1080)

quality PSNR 4K size 4K PSNR 4K size 4K
10 29.33 dB 539.30 kB 27.41 dB 145.90 kB
20 32.70 dB 697.20 kB 30.32 dB 198.30 kB
30 34.63 dB 850.60 kB 31.92 dB 243.60 kB
40 35.97 dB 958.90 kB 32.99 dB 282.20 kB
50 36.94 dB 1073.30 kB 33.82 dB 319.10 kB
60 37.96 dB 1217.10 kB 34.65 dB 360.00 kB
70 39.22 dB 1399.20 kB 35.71 dB 422.10 kB
80 40.67 dB 1710.00 kB 37.15 dB 526.70 kB
90 42.83 dB 2441.40 kB 39.84 dB 768.40 kB
100 47.09 dB 7798.70 kB 47.21 dB 2499.60 kB

Compile

To build console application check Requirements and go to gpujpeg directory (where README.md and COPYING files are placed) and run cmake command:

cmake -DCMAKE_BUILD_TYPE=Release -Bbuild .
cmake --build build

You can also use autotools to create a build recipe for the library and the application or a plain old Makefile.bkp. However, cmake is recommended.

Usage

libgpujpeg library

To build libgpujpeg library check Compile.

To use library in your project you have to include library to your sources and linked shared library object to your executable:

#include <libgpujpeg/gpujpeg.h>

For simple library usage examples you look into subdirectory examples.

Encoding

For encoding by libgpujpeg library you have to declare two structures and set proper values to them. The first is definition of encoding/decoding parameters, and the second is structure with parameters of input image:

struct gpujpeg_parameters param;
gpujpeg_set_default_parameters(&param);
param.quality = 80;
// (default value is 75)
param.restart_interval = 16;
// (default value is 8)
param.interleaved = 1;
// (default value is 0)

struct gpujpeg_image_parameters param_image;
gpujpeg_image_set_default_parameters(&param_image);
param_image.width = 1920;
param_image.height = 1080;
param_image.comp_count = 3; // output JPEG channel count (3 default)
param_image.color_space = GPUJPEG_RGB; // input colorspace (GPUJPEG_RGB
                                       // default), can be also
                                       // eg. GPUJPEG_YCBCR_JPEG
param_image.pixel_format = GPUJPEG_444_U8_P012;
// or eg. GPUJPEG_U8 for grayscale
// (default value is GPUJPEG_444_U8_P012)

If you want to use subsampling in JPEG format call following function, that will set default sampling factors (2x2 for Y, 1x1 for Cb and Cr):

// Use default sampling factors
gpujpeg_parameters_chroma_subsampling(&param);

Or define sampling factors by hand:

// User custom sampling factors
param.sampling_factor[0].horizontal = 4;
param.sampling_factor[0].vertical = 4;
param.sampling_factor[1].horizontal = 1;
param.sampling_factor[1].vertical = 2;
param.sampling_factor[2].horizontal = 2;
param.sampling_factor[2].vertical = 1;

Next you have to initialize CUDA device by calling:

if ( gpujpeg_init_device(device_id, 0) )
    return -1;

where first parameters is CUDA device (e.g. device_id = 0) id and second parameter is flag if verbose output should be used (0 or GPUJPEG_VERBOSE). Next step is to create encoder:

struct gpujpeg_encoder* encoder = gpujpeg_encoder_create(0);
if ( encoder == NULL )
    return -1;

When creating encoder, library allocates all device buffers which will be needed for image encoding and when you encode concrete image, they are already allocated and encoder will used them for every image. Now we need raw image data that we can encode by encoder, for example we can load it from file:

int image_size = 0;
uint8_t* input_image = NULL;
if ( gpujpeg_image_load_from_file("input_image.rgb", &input_image,
         &image_size) != 0 )
    return -1;

Next step is to encode uncompressed image data to JPEG compressed data by encoder:

struct gpujpeg_encoder_input encoder_input;
gpujpeg_encoder_input_set_image(&encoder_input, input_image);

uint8_t* image_compressed = NULL;
int image_compressed_size = 0;
if ( gpujpeg_encoder_encode(encoder, &encoder_input, &image_compressed,
         &image_compressed_size) != 0 )
    return -1;

Compressed data are placed in internal encoder buffer so we have to save them somewhere else before we start encoding next image, for example we can save them to file:

if ( gpujpeg_image_save_to_file("output_image.jpg", image_compressed,
         image_compressed_size, NULL) != 0 )
    return -1;

Now we can load, encode and save next image or finish and move to clean up encoder. Finally we have to clean up so destroy loaded image and destroy the encoder.

gpujpeg_image_destroy(input_image);
gpujpeg_encoder_destroy(encoder);

Decoding

For decoding we don't need to initialize two structures of parameters. We only have to initialize CUDA device if we haven't initialized it yet and create decoder:

if ( gpujpeg_init_device(device_id, 0) )
    return -1;

struct gpujpeg_decoder* decoder = gpujpeg_decoder_create(0);
if ( decoder == NULL )
    return -1;

Now we have two options. The first is to do nothing and decoder will postpone buffer allocations to decoding first image where it determines proper image size and all other parameters (recommended). The second option is to provide input image size and other parameters (reset interval, interleaving) and the decoder will allocate all buffers and it is fully ready when encoding even the first image:

// you can skip this code below and let the decoder initialize automatically
struct gpujpeg_parameters param;
gpujpeg_set_default_parameters(&param);
param.restart_interval = 16;
param.interleaved = 1;

struct gpujpeg_image_parameters param_image;
gpujpeg_image_set_default_parameters(&param_image);
param_image.width = 1920;
param_image.height = 1080;
param_image.pixel_format = GPUJPEG_444_U8_P012;
param_image.comp_count = 3;

// Pre initialize decoder before decoding
gpujpeg_decoder_init(decoder, &param, &param_image);

If you want to specify output image color space and/or subsampling factor, you can use following two parameters. You can specify them though the param structure befor passing it to gpujpeg_decoder_init. But if you postpone this initialization process to the first image, you have no other option than specify them in this way:

gpujpeg_decoder_set_output_format(decoder, GPUJPEG_RGB,
                GPUJPEG_444_U8_P012);
// or eg. GPUJPEG_YCBCR_JPEG and GPUJPEG_422_U8_P1020

Next we have to load JPEG image data from file and decoded it to raw image data:

int image_size = 0;
uint8_t* image = NULL;
if ( gpujpeg_image_load_from_file("input_image.jpg", &image,
         &image_size) != 0 )
    return -1;

struct gpujpeg_decoder_output decoder_output;
gpujpeg_decoder_output_set_default(&decoder_output);
if ( gpujpeg_decoder_decode(decoder, image, image_size,
         &decoder_output) != 0 )
    return -1;

Now we can save decoded raw image data to file and perform cleanup:

if ( gpujpeg_image_save_to_file("output_image.rgb", decoder_output.data,
         decoder_output.data_size, NULL) != 0 )
    return -1;

gpujpeg_image_destroy(image);
gpujpeg_decoder_destroy(decoder);

GPUJPEG console application

The console application gpujpeg uses libgpujpeg library to demonstrate it's functions. To build console application check Compile.

To encode image from raw RGB image file to JPEG image file use following command:

gpujpegtool --encode --size=WIDTHxHEIGHT --quality=QUALITY \
        INPUT_IMAGE.rgb OUTPUT_IMAGE.jpg

You must specify input image size by --size=WIDTHxHEIGHT parameter. Optionally you can specify desired output quality by parameter --quality=QUALITY which accepts values 0-100. Console application accepts a few more parameters and you can list them by folling command:

gpujpegtool --help

To decode image from JPEG image file to raw RGB image file use following command:

gpujpegtool --decode OUTPUT_IMAGE.jpg INPUT_IMAGE.rgb

You can also encode and decode image to test the console application:

gpujpegtool --encode --decode --size=WIDTHxHEIGHT --quality=QUALITY \
        INPUT_IMAGE.rgb OUTPUT_IMAGE.jpg

Decoder will create new decoded file OUTPUT_IMAGE.jpg.decoded.rgb and do not overwrite your INPUT_IMAGE.rgb file.

Console application is able to load raw RGB image file data from *.rgb files and raw YUV and YUV422 data from *.yuv files. For YUV422 you must specify *.yuv file and use --sampling-factor=4:2:2 parameter.

All supported parameters for console application are following:

--help
    Prints console application help
--size=1920x1080
    Input image size in pixels, e.g. 1920x1080
--pixel-format=444-u8-p012
    Input/output image pixel format ('u8', '444-u8-p012', '444-u8-p012z',
    '444-u8-p0p1p2', '422-u8-p1020', '422-u8-p0p1p2' or '420-u8-p0p1p2')
--colorspace=rgb
    Input image colorspace (supported are 'rgb', 'yuv' and 'ycbcr-jpeg',
    where 'yuv' means YCbCr ITU-R BT.601), when *.yuv file is specified,
    instead of default 'rgb', automatically the colorspace 'yuv' is used
--quality
    Set output quality level 0-100 (default 75)
--restart=8
    Set restart interval for encoder, number of MCUs between
    restart markers
--subsampled
    Produce chroma subsampled JPEG stream
--interleaved
    Produce interleaved stream
--encode
    Encode images
--decode
    Decode images
--device=0
    By using this parameter you can specify CUDA device id which will
    be used for encoding/decoding.

Restart interval is important for parallel huffman encoding and decoding. When --restart=N is used (default is 8), the coder can process each N MCUs independently, and so he can code each N MCUs in parallel. When --restart=0 is specified, restart interval is disabled and the coder must use CPU version of huffman coder (because on GPU would run only one thread, which is very slow).

The console application can encode/decode multiple images by following command:

gpujpegtool ARGUMENTS INPUT_IMAGE_1.rgb OUTPUT_IMAGE_1.jpg \
        INPUT_IMAGE_2.rgb OUTPUT_IMAGE_2.jpg ...

Requirements

To be able to build and run libgpujpeg library and gpujpeg console application you need:

  1. NVIDIA CUDA Toolkit
  2. C/C++ compiler + CMake
  3. NVIDIA drivers
  4. CUDA enabled NVIDIA GPU (cc >= 2.0; older may or may not work)
  5. optional OpenGL support:
    • GLEW, OpenGL (usually present in Windows, may need headers installation in Linux)
    • GLFW or GLX (Linux only) for context creation
    • GLUT for OpenGL tests

License

  • See file COPYING.
  • This software contains source code provided by NVIDIA Corporation.
  • This software source code is based on SiGenGPU [3].

References

  1. ITU-T Rec T.81
  2. ILG
  3. SiGenGPU (currently defunct)
  4. ECMA TR/098 (JFIF)
  5. ITU-T Rec T.84 (SPIFF)
  6. SPIFF File Format Summary (FileFormat.Info)
  7. Component ID registration

More Repositories

1

UltraGrid

UltraGrid low-latency audio and video network transmission system
C
499
star
2

libyang

YANG data modeling language library
C
367
star
3

netopeer2

NETCONF toolset
C
301
star
4

libnetconf2

C NETCONF library
C
203
star
5

ipfixcol2

High-performance NetFlow v5/v9 and IPFIX collector (RFC7011)
C
119
star
6

netopeer

NETCONF Protocol Toolset
Shell
116
star
7

libnetconf

C NETCONF library
C
110
star
8

Nemea

System for network traffic analysis and anomaly detection.
Shell
79
star
9

ipfixcol

IPFIXcol is an implementation of an IPFIX (RFC 7011) collector
C++
64
star
10

libyang-python

Python bindings for the libyang library
Python
62
star
11

perun

Perun Identity and Access Management System
Java
57
star
12

pakiti-server

Pakiti provides a monitoring mechanism to check the patching status of Linux systems.
PHP
49
star
13

Netopeer-GUI

Graphical user interface for NETCONF client
PHP
35
star
14

NERD

Network Entity Reputation Database
Python
31
star
15

ipfixprobe

C++
30
star
16

FlowTest

Testbed for testing NetFlow/IPFIX network monitoring probes. Includes tools for PCAP generation and replay of 1/10/100G network traffic.
C++
29
star
17

Netopeer2GUI

Web-based NETCONF management center
TypeScript
25
star
18

ndk-app-minimal

Minimal Application based on Network Development Kit (NDK) for FPGA cards
VHDL
24
star
19

ofm

Open FPGA Modules
VHDL
22
star
20

Nemea-Detectors

Detection modules of the Nemea system.
C++
21
star
21

sphinx-vhdl

Python
20
star
22

fake-oidc-server

A simple OpenID Connect Authorization Server that provides a single user
Java
19
star
23

cesnet-datazoo

CESNET DataZoo: A toolset for large network traffic datasets
Python
17
star
24

netconf-cli

A NETCONF-talking CLI
C++
15
star
25

Nemea-Modules

Base modules of the Nemea system. This repository contains modules for export, replay, filtering, merging etc.
C++
14
star
26

rad_eap_test

Nagios compatible shell script used for testing RADIUS servers by EAP
Shell
14
star
27

secant

Security Cloud Assessment Tool
Shell
11
star
28

torque

MetaCentrum fork of Torque batch system used on the Czech National Grid
C
11
star
29

libyang-cpp

C++ bindings for the libyang library
C++
10
star
30

Nemea-Framework

Nemea framework is the heart of the Nemea system. It contains implementation of common communication interfaces, UniRec data format and useful datastructures and algorithms.
C
10
star
31

perun-services

Scripts used by Perun to (de)provision services with authorization data
Perl
9
star
32

velia

YANG System management for embedded devices running Linux
C++
9
star
33

libfds

Flow Data Storage library
C++
9
star
34

pbspro.hooks

Python
8
star
35

ALF

Active Learning Framework
Python
8
star
36

cesnet-models

CESNET Models: Neural networks for network traffic classification
Python
8
star
37

rousette

An almost-RESTCONF server
C++
7
star
38

wayf

The CESNET WAYF service
JavaScript
7
star
39

cesnet-tcexamples

Jupyter notebooks with traffic classification examples using CESNET DataZoo and CESNET Models packages
Jupyter Notebook
7
star
40

TorqueFastSched

High performance scheduler for Torque resource manager. Optimized for highly heterogeneous environments.
C++
6
star
41

liberouter-gui

Python
6
star
42

pOCCI

OCCI Compliance Tests
Python
6
star
43

libfastbit

Clone of FastBit repository
C++
6
star
44

NEMEA-SIoT

NEMEA modules for securing IoT networks.
C
6
star
45

exafs

ExaFS is a tool for creation, validation, and execution of ExaBGP messages.
Python
6
star
46

eduroam-icinga

new ermon (eduroam monitoring)
Shell
6
star
47

ansible-freeradius

Ansible role to install FreeRADIUS v3 for eduroam.cz
Shell
6
star
48

etlog

eduroam traffic log analysis
JavaScript
5
star
49

gridsite

Grid Security for the Web.
C
5
star
50

php-perun-ws

PHP
5
star
51

lighterwall

LighterWall is an iptables/ip6tables wrapper to ease writing of corresponding IPv4/IPv6 firewalls
Shell
5
star
52

connector-kerberos

Native MIT Kerberos Polygon+ConnId connector
Java
4
star
53

ndk-core

Common CORE of Network Development Kit (NDK)
VHDL
4
star
54

eInfra-docs

Python
4
star
55

perun-ansible

Ansible scripts for Perun installation
4
star
56

389ds-plugin-ssm

Server Side Modification plugin
C
4
star
57

LiST

Security Tools as a Service
Python
4
star
58

perun-ansible-roles

repo with git submodules for Ansible roles
4
star
59

Nemea-OpenWRT

The NEMEA packages feed
Makefile
4
star
60

dp3

Dynamic Profile Processing Platform (DP³), the base platform for ADiCT project
Python
4
star
61

ndk-sw

Linux driver and SW tools for Network Development Kit (NDK)
C
4
star
62

libnetconf2-cpp

C++ bindings for the libnetconf2 library
C++
4
star
63

satosa-module-webauthn

WebAuthn module for SaToSa
Python
3
star
64

shongo

Shongo Resource Management System
Java
3
star
65

DHuSTools

Small tools developed to accompany ESA DHuS instances
Shell
3
star
66

metacentrum-accounting

Accounting for MetaCentrum
Java
3
star
67

lgbm2vhdl

LGBM2VHDL: Tool for converting LightGBM models into VHDL implementation.
Python
3
star
68

IndigoVR

Virtual Router Appliance for virtual networks
3
star
69

perun-mitreid

OpenID Connect Provider for Perun
Java
3
star
70

occi-schemas

OCCI (Open Cloud Computing Interface) Rendering Schemas
Makefile
3
star
71

ndk-cards-open

FPGA cards files for the NDK
VHDL
3
star
72

php-authz-ws

Authorization web service
PHP
3
star
73

canl-c

Common Authentication library - bindings for C.
C
3
star
74

shongo-authn-server

Authentication server for the Shongo project
PHP
3
star
75

pakiti-client

Client for Pakiti patching status monitoring system
Perl
3
star
76

glite-lb

gLite Logging and Bookkeeping.
C
3
star
77

fdistdump

Tool for distributed quering of flow data.
C
3
star
78

sysrepo-ietf-alarms

Alarm management (ietf-alarms) YANG module for sysrepo
C++
3
star
79

ansible-role-yubikeys

Ansible Galaxy role cesnet.yubikeys
2
star
80

simplesamlphp-module-authswitcher

PHP
2
star
81

theme-cesnet

Custom CESNET theme for ownCloud
PHP
2
star
82

ansible-role-apache-tls

Ansible Galaxy role cesnet.apache_tls
2
star
83

user_openidc

ownCloud user backend app providing OpenID Connect authentication
PHP
2
star
84

perun-simplesamlphp-module

Module which allows simpleSAMLphp to get data from Perun
PHP
2
star
85

proxyrenewal

Proxyrenewal renews existing proxy certificates for grid users.
C
2
star
86

NOW

Component to extend OpenNebula network orchestration capabilities
Ruby
2
star
87

Nemea-Supervisor

Management and monitoring module for the Nemea system.
Shell
2
star
88

glite-testsuites

Testsuites for gLite middleware and EMI products - canl-c, L&B, Proxyrenewal and Gridsite.
Shell
2
star
89

metaman-helpers

Client-side and server-side Git hooks along with other possible helpers for MetaMan.
Shell
2
star
90

eduroam-db

tools for management of eduroam database data
JavaScript
2
star
91

eduroam-live

live demonstration of eduroam service in action
JavaScript
2
star
92

netopeerguid

Netopeer-GUI backend
C
2
star
93

Phishingator

Phishingator – Phishing Training System (Systém pro rozesílání cvičných phishingových zpráv)
PHP
2
star
94

lbr-testsuite

Python
2
star
95

google-group-connector

Tool for provisioning users and groups in your domain in G Suite
Java
2
star
96

shibboleth-sp-access-control

Shibboleth service provider access control
PHP
2
star
97

PerQoDA

1
star
98

satosa-microservice-webauthn

WebAuthn microservice for SaToSa
Python
1
star
99

ansible-role-postgresql

Ansible Galaxy role cesnet.postgresql
1
star
100

metacentrum-hands-on

Repository for MetaCentrum hands-on courses
1
star