• Stars
    star
    142
  • Rank 258,495 (Top 6 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Python sample for referencing object detection model with TensorRT

TensorRT Python Sample for Object Detection

Performance includes memcpy and inference.

Model Input Size TRT Nano
ssd_inception_v2_coco(2017) 300x300 49ms
ssd_mobilenet_v1_coco 300x300 36ms
ssd_mobilenet_v2_coco 300x300 46ms

Since the optimization of preprocessing is not ready yet, we don't include image read/write time here.

Install dependencies

$ sudo apt-get install python3-pip libhdf5-serial-dev hdf5-tools
$ pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42 tensorflow-gpu==1.13.1+nv19.5 --user
$ pip3 install numpy pycuda --user


Download model

Please download the object detection model from TensorFlow model zoo.

$ git clone https://github.com/AastaNV/TRT_object_detection.git
$ cd TRT_object_detection
$ mkdir model
$ cp [model].tar.gz model/
$ tar zxvf model/[model].tar.gz -C model/
Supported models:
  • ssd_inception_v2_coco_2017_11_17
  • ssd_mobilenet_v1_coco
  • ssd_mobilenet_v2_coco

We will keep adding new model into our supported list.



Update graphsurgeon converter

Edit /usr/lib/python3.6/dist-packages/graphsurgeon/node_manipulation.py

diff --git a/node_manipulation.py b/node_manipulation.py
index d2d012a..1ef30a0 100644
--- a/node_manipulation.py
+++ b/node_manipulation.py
@@ -30,6 +30,7 @@ def create_node(name, op=None, _do_suffix=False, **kwargs):
     node = NodeDef()
     node.name = name
     node.op = op if op else name
+    node.attr["dtype"].type = 1
     for key, val in kwargs.items():
         if key == "dtype":
             node.attr["dtype"].type = val.as_datatype_enum


RUN

1. Maximize the Nano performance

$ sudo nvpmodel -m 0
$ sudo jetson_clocks

2. Update main.py based on the model you used

from config import model_ssd_inception_v2_coco_2017_11_17 as model
from config import model_ssd_mobilenet_v1_coco_2018_01_28 as model
from config import model_ssd_mobilenet_v2_coco_2018_03_29 as model

3. Execute

$ python3 main.py [image]

It takes some time to compile a TensorRT model when the first launching.
After that, TensorRT engine can be created directly with the serialized .bin file

@ To get more memory, it's recommended to turn-off X-server.